An Application of Stahl’s Conjecture About the k-tuple Chromatic Numbers of Kneser Graphs

نویسندگان

  • Svata Poljak
  • Fred S. Roberts
چکیده

A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G so that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G is the smallest t so that there is such a k-tuple coloring of G using t colors in all. The Kneser graph K(m,n) has as vertices all n-element subsets of the set {1,2, . . . ,m} and an edge between two subsets iff they are disjoint. The value of the k-tuple chromatic number of the Kneser Graph is the subject of a 30-year-old conjecture of Saul Stahl. This paper summarizes known results about Stahl’s Conjecture and applies the ideas to answer two questions of N.V.R. Mahadev about the relation between the n-tuple chromatic number of a graph and n times the size of its largest clique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

A short proof for Chen's Alternative Kneser Coloring Lemma

We give a short proof for Chen’s Alternative Kneser Coloring Lemma. This leads to a short proof for the Johnson-Holroyd-Stahl conjecture that Kneser graphs have their circular chromatic numbers equal to their chromatic numbers.

متن کامل

Hedetniemi’s Conjecture Via Alternating Chromatic Number

In an earlier paper, the present authors (2013) [1] introduced the alternating chromatic number for hypergraphs and used Tucker’s Lemma, an equivalent combinatorial version of the Borsuk-Ulam Theorem, to show that the alternating chromatic number is a lower bound for the chromatic number. In this paper, we determine the chromatic number of some families of graphs by specifying their alternating...

متن کامل

On the topological lower bound for the multichromatic number

In 1976 Stahl [13] de ned the m-tuple coloring of a graph G and formulated a conjecture on the multichromatic number of Kneser graphs. For m = 1 this conjecture is Kneser's conjecture which was solved by Lovász [10]. Here we show that Lovász's topological lower bound in this way cannot prove Stahl's conjecture. We obtain that the strongest index bound only gives the trivial m · ω(G) lower bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008